
Hank Childs, University of Oregon & Lawrence Berkeley Sep 16th, 2013

Hybrid Parallelism and Visualization

We achieve parallelism by
parallelizing over pieces of data.

PE = Processing Element

Embarrassingly parallel
vs.

Non-embarrassingly parallel

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

supercomputer

What is hybrid parallelism?

PE #1 PE #2 PE #3

PE
#N-2

PE
#N-1

PE
#N

….

Distributed-memory parallelism

  Hybrid parallelism combines distributed- and
shared-memory techniques.

PE = Processing Element

message
passing

Examples: MPI (Message Passing
 Interface)

Shared-memory parallelism

C2 C1 C3

C5 C4 C6

single node

memory
semaphores,
mutexes

Examples: pthreads, OpenMP,
 OpenCL, CUDA?
There are different types of
shared-memory parallelism.

Definitions

  Core: a processing thread on a CPU
  Node: a group of cores that share memory
  Processing Element (PE): one instance (of many) of a

distributed memory parallel program

7

Brief Historical Perspective
  Mid 1970s-mid 1990s:

  Vector machines: Cray 1 ... NEC SX
  Vectorizing Fortran compilers help optimize

a[i]=b[i]*x+c.

8

Brief Historical Perspective
  Mid 1970s-mid 1990s:

  Vector machines: Cray 1 ... NEC SX
  Vectorizing Fortran compilers help optimize

a[i]=b[i]*x+c.
  Early 1990s-present:

  The rise of MPP (massively parallel processing),
based on the commodity microprocessor.

  Message Passing Interface (MPI) becomes the gold
standard for building/running parallel codes on
MPPs.

Massive programming
investment!!

9

Brief Historical Perspective
  Mid 1970s-mid 1990s:

  Vector machines: Cray 1 ... NEC SX
  Vectorizing Fortran compilers help optimize

a[i]=b[i]*x+c.
  Early 1990s-present:

  The rise of MPP (massively parallel processing),
based on the commodity microprocessor.

  Message Passing Interface (MPI) becomes the gold
standard for building/running parallel codes on
MPPs.

  Mid 2000s-present:
  Rise of the multi-core CPU, GPU. AMD Opteron,

Intel Nehalem, Sony Cell BE, NVIDIA G80, etc.
  Large supercomputers comprised of lots of multi-

core CPUs.

Massive programming
investment? … not so much (yet)

Massive programming
investment!!

Distributed Memory Parallelism
(early 2000s)

supercomputer

CPU0 Node 0
PE 0

CPU0 Node 1
PE 1

CPU0 Node 2
PE 2

CPU0 Node 3
PE 3

De Facto Standard for Distributed-
Memory Parallelism

supercomputer

CPU0 Node 0
PE 0

CPU1

PE 1

CPU0 Node 1
PE 2

CPU1

PE 3

CPU0 Node 2
PE 4

CPU1

PE 5

CPU0 Node 3
PE 6

CPU1

PE 7

Contrasting Hybrid Parallel and
Non-Hybrid Parallel Versions

supercomputer

CPU0 Node 0
PE 0

CPU1

PE 1

CPU0 Node 1
PE 2

CPU1

PE 3

CPU0 Node 2
PE 4

CPU1

PE 5

CPU0 Node 3
PE 6

CPU1

PE 7

supercomputer

CPU0 Node 0
PE 0

CPU1

CPU0 Node 1
PE 1

CPU1

CPU0 Node 2
PE 2

CPU1

CPU0 Node 3
PE 3

CPU1

Non-hybrid parallel version Hybrid parallel version

Q: What do we lose when we ignore shared-
memory parallelism?

A1: With two cores per node, probably not a lot.
A2: Possibilities for saving on communication,

memory, load balancing.

On the (non-) transition to
hybrid parallelism…

  In our defense,
 Biggest gains were in scalability with many PE’s
 Putting two MPI tasks on a node wasn’t so bad
 Lack of will/enthusiasm for big code re-writes

  But…

Research Overview For
Hybrid Parallelism

  Fundamental questions:
 How to map algorithm onto a complex memory, communication

hierarchy?
 What is the right balance of distributed- vs. shared-memory

parallelism? How does balance impact performance?

Research Overview For
Hybrid Parallelism

  Many factors influence performance/scalability:
 Synchronization overhead.
 Load balance (intra- and inter-chip).
 Communication overhead and patterns.
 Memory access patterns.
 Fixed costs of initialization.
 Number of runtime threads.

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

The (Soon to Be) Good Old Days:
Visualization as a Post-Processor

Problem setup
(i.e. meshing)

Simulation Visualization

Filesystem

Week 1
Week 2

Week 2

Week 5 Week 2

Week 3
Week 3

The shift away from this model has been
happening for a while.

In Situ Processing

  Defined: couple visualization and analysis routines
with the simulation code (no I/O)

  Pros:
 No I/O!
 Can access all the data
 Computational power readily available

  Cons:
 Must know what you want to look for a priori
  Increasing complexity
 Constraints (memory, network, execution time)

Some history behind this presentation…

  “Why Petascale Visualization Will Change the
Rules” (2007-2010)

  “Why Exascale Visualization Will Change the
Rules” (2011-2013)

NSF Workshop on Petascale I/O

The context for this talk…

Petascale
Visualization

Exascale
Visualization

I/O Bandwidth I/O Bandwidth
Data

Movement

Data Movement’s
4 Angry Pups

Hybrid
Parallelism &
Visualization

5th Pup!!

Will describe petascale and exascale wolves and
pups in upcoming slides.

The I/O Wolf

  Large data visualization is
almost always >50% I/O
and sometimes 98% I/O

  Amount of data to visualize
is typically O(total mem)

FLOPs  Memory  I/O 

Terascale machine 

“Petascale machine” 

  Two big factors:
①  how much data you have to read
②  how fast you can read it

  Relative I/O (ratio of total memory and I/O) is key

Exascale: a heterogeneous, distributed
memory GigaHz KiloCore MegaNode system

~3

c/o P. Beckman, Argonne

Data movement costs power
and we have to get ~100X

more power efficient.

The Four Angry Pups

Exascale
Visualization

I/O Bandwidth
Data

Movement

Data Movement’s
4 Angry Pups

  In situ system design
  Memory footprint
  Programming languages
  Exploration with in situ
  (5th pup: hybrid parallelism)

Exascale Hardware: Moore’s Law Is
Alive and Well

•  Moore’s Law was
approximated to apply to
clock speed…
•  … that approximation

no longer applies
•  But transistor counts

continue to climb.
•  And this is equating to

more and more cores
per node…
•  … how far will this

go?

Multi-core Versus Many-core

Intel Pentium Dual-Core, 2006 NERSC Hopper machine, 24 cores per node

NVIDIA K20 GPU Accelerator,
2496 thread processors

Intel Xeon Phi, 57-61 cores per node,
each with 16-way vector compute

There are qualitative differences between
programming multi-core and many-core nodes.

Pthreads,
OpenMP

CUDA

Intel
TBB

Typically used as
accelerator (no

access to network)

  Multi-core node: few dozens of cores per node

  Many-core node: 100s to 1000s of cores per node
OpenCL

Definitions

  Core: a processing thread on a CPU
  Node: a group of cores that share memory
  Processing Element (PE): one instance (of many) of a

distributed memory parallel program
  Multi-core: dozens of cores per node
  Many-core: 100s to 1000s of cores per node

Petascale and Exascale Solutions

  Petascale: we must reduce I/O
 Multi-resolution
  In situ
 Subsetting
 Out-of-core

  Exascale: we must minimize power & data movement
  In situ
 Power efficiency within a core
 Power efficiency across nodes

“The world as we know it” /
“The world as we assume it”

  We will need to run in situ
 We will need to minimize impact on the simulation code:

memory, execution time, communication bandwidth,
power consumption

  The HW already is multi-core, and increasingly
many-core
 We are going to have to adapt to the HW

Hybrid parallelism will be necessary
to achieve these goals.

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

Previous work on hybrid parallelism

  Simulations: GPGPU, others
  Visualization: lots of single GPU work
  Hybrid parallelism + visualization: only a handful of

studies.
 This oversight is significant: parallel visualization and

analysis algorithms have markedly different
characteristics – computational load, memory access
pattern, communication, idle time, etc. – than the other
two categories.

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection

Multi-core

Many-core

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection

Multi-core

Many-core

Volume Rendering Studies

  Volume rendering: use a combination of
color and transparency to see an entire
three-dimensional volume at one time.

  Consists of 2 phases: sample & composite
 Sampling: embarrassingly parallel
 Compositing: parallel communication

  Goal: sampling continues to work well,
compositing gets faster

Multi-core Volume Rendering

  Study: use same HW, with hybrid parallelism and without

  References:
  Howison et al. “MPI-hybrid Parallelism for Volume Rendering on Large, Multi-

core Systems” In EGPGV’10

  Howison et al. “Hybrid Parallelism for Volume Rendering on Large-, Multi-, and
Many-Core Systems” in TVCG, Jan. 2012

Many-core Volume Rendering

  Study concerned with mapping the algorithm and
optimizing performance, not with comparisons
 Result: can use GPU cluster to do volume rendering of

very large data sets.

  References:
  T. Fogal et al. Large Data Visualization on Distributed Memory Multi-

GPU Clusters. In HPG 2010.

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection

Multi-core

Many-core

What is advection?

Particle advection is a foundational
visualization algorithm

•  Advecting particles
creates integral curves

“Parallelize over data” strategy:
parallelize over pieces and pass particles

PE1 PE2

PE4 PE3
PE = Processing

Element, i.e.
an instance of
the program.

Other parallelization schemes, but
this one is common.

Very hard to get good efficiency,
especially due to data dependency.

Studies for Multi-core and
Many-core Particle Advection

  “No two particle advection problems are alike.”
 Studies vary over:

 Number of seed points.
 Duration of advection.
 Vector field complexity (via multiple data sets)

  Both studies involve comparisons:
 Multi-core: how does hybrid parallelism improve

performance?
 Many-core: if we have a GPU cluster, should we even

use the GPUs? (latencies, slower processor cores)

Multi-core: comparing speedups for
hybrid parallelism

Data Set #1 Data Set #3 Data Set #2

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Benefits in execution time and
communication.

Also studied other parallelization
schemes which showed benefits in

memory footprint.

Multi-core comparisons: Gantt Chart
MPI-Hybrid

MPI-Only

Time

Time

8 cores integrating

2 cores integrating

  References: D. Camp et al. “Streamline Integration Using MPI-Hybrid
Parallelism on a Large Multicore Architecture.” TVCG Nov. 2011

Many-core: studying 150 pairs of
tests…

Many-core: identifying the most
dominant factors for performance

  References: D. Camp et al. “GPU Acceleration of Particle Advection
Workloads in a Parallel, Distributed Memory Setting.” EGPGV 2013

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection
Production

Usage

Multi-core

Many-core

Multi-core production usage

  Many visualization algorithms are embarrassingly
parallel.

  Further, nature of implementation for visualization
software lends itself to hybrid parallel model.
 One PE per node.
 PE divides work among cores.
 Cores can execute on their piece of data without

needing to coordinate with other cores/PEs.

Multi-core production usage

  Savings in memory: 22.3 GB 20.7GB (=1.6GB)
 Strictly because of fewer instances of the binary

  Improvements in performance: 14s 8.4s (1.67X)
 Due to improved load balancing

  References:
  Camp et al. “Transitioning Data Flow-Based Visualization Software to

Multi-Core Hybrid Parallelism.” Workshop on Data-Flow Execution
Models for Extreme Scale Computing (DFM 2013)

Many-core production usage

  See future work…

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

Many-core is scary.

  Two reasons legacy code may not map well to
many-core space:
 Language mismatch
 Need to re-think algorithms for 100s to 1000s of cores

per node.

Many-core is scary.

  New libraries in development for many-core
visualization
 DAX
 EAVL
 PISTON
  (panel at SC12 & upcoming panel @ Vis13)

  These libraries could be integrated with tools that
have legacy approaches

  Still need to explore hybrid parallelism!!

More future work

  New dimension of evaluation: power
 What is the most power-efficient way to do hybrid

parallel particle advection? … we don’t know

Summary, Part 1 (of 4)

  Hybrid parallelism research questions:
 How to map the algorithm to this complex architecture?
 How to best take advantage of the architecture?

  Hybrid parallelism has been demonstrated to
improve:
 Memory usage
 Execution time
 Communication bandwidth

Summary, Part 2 (of 4)

  The volume rendering and particle advection studies
help understand the impacts of hybrid parallelism,
but more work is needed for these algorithms.
 And lots of work for other algorithms.

Adding it all up

  Today:
 Simulation scientist: “can you help me visualize X?”

  Soon:
 Simulation scientist: “can you help me visualize X? … and I

have the following constraints --- C1, C2, C3”

  Example constraints:
  Execution time
 Memory usage
  Power consumption
 Communication bandwidth

The primary message of this talk

  We will soon live in a world where simulation
scientists will ask us to solve problems with
constraints.

  Hybrid parallelism will help us meet those
constraints, by lowering our requirements.

  Our community has a lot of work to do ... let’s get to
it!!!

Acknowledgments

  Thank you to:
 Funding agencies:

 U.S. Dept. of Energy CAREER award
 SciDAC Institute on Scientific Data Management, Analysis

and Visualization (SDAV)

 Dr. Garth & TU Kaiserslautern for arranging this
presentation.

 You, the audience!

Hank Childs, University of Oregon & Lawrence Berkeley Sep 16th, 2013

Questions?

Hybrid Parallelism and Visualization

